Contents

Contributors .. vii

Preface .. xi

1 Introduction 1
1.1 Considering the Role of X-ray
Spectrometry in Chemical Analysis
and Outlining the Volume 1

2 X-Ray Sources 13
2.1 Micro X-ray Sources 13
2.2 New Synchrotron Radiation Sources 29
2.3 Laser-driven X-ray Sources 49

3 X-Ray Optics 63
3.1 Multilayers for Soft and Hard
X-rays .. 63
3.2 Single Capillaries X-ray Optics 79
3.3 Polycapillary X-ray Optics 89
3.4 Parabolic Compound Refractive
X-ray Lenses 111

4 X-Ray Detectors 133
4.1 Semiconductor Detectors for
(Imaging) X-ray Spectroscopy 133
4.2 Gas Proportional Scintillation
Counters for X-ray
Spectrometry 195
4.3 Superconducting Tunnel Junctions 217
4.4 Cryogenic Microcalorimeters 229
4.5 Position Sensitive Semiconductor
Strip Detectors 247

5 Special Configurations 277
5.1 Grazing-incidence X-ray
Spectrometry 277

5.2 Grazing-exit X-ray Spectrometry 293
5.3 Portable Equipment for X-ray
Fluorescence Analysis 307
5.4 Synchrotron Radiation for
Microscopic X-ray Fluorescence
Analysis .. 343
5.5 High-energy X-ray Fluorescence 355
5.6 Low-energy Electron Probe
Microanalysis and Scanning
Electron Microscopy 373
5.7 Energy Dispersive X-ray
Microanalysis in Scanning and
Conventional Transmission Electron
Microscopy 387
5.8 X-Ray Absorption Techniques 405

6 New Computerisation Methods 435
6.1 Monte Carlo Simulation for X-ray
Fluorescence Spectroscopy 435
6.2 Spectrum Evaluation 463

7 New Applications 487
7.1 X-Ray Fluorescence Analysis in
Medical Sciences 487
7.2 Total Reflection X-ray Fluorescence
for Semiconductors and Thin Films 517
7.3 X-Ray Spectrometry in
Archaeometry 533
7.4 X-Ray Spectrometry in Forensic
Research ... 553
7.5 Speciation and Surface Analysis of
Single Particles Using
Electron-excited X-ray Emission
Spectrometry 569

Index .. 593
Contributors

F. Adams
Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium

J. Börjesson
Department of Diagnostic Radiology, Country Hospital, SE-301 85 Halmstad, Sweden

A. Brunetti
Department of Mathematics and Physics, University of Sassari, Via Vienna 2, I–07100 Sassari, Italy

R. Bytheway
BEDE Scientific Instruments Ltd, Belmont Business Park, Durham DH1 1TW, UK

A. Castellano
Department of Materials Science, University of Lecce, I-73100 Lecce, Italy

R. Cesareo
Department of Mathematics and Physics, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy

C. A. Conde
Physics Department, University of Coimbra, P-3004-0516 Coimbra, Portugal

W. Dąbrowski
Faculty of Physics and Nuclear Techniques, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

E. Figueroa-Feliciano
NASA/Goddard Space Flight Centre, Code 662, Greenbelt, MD 20771, USA

M. Galeazzi
University of Miami, Department of Physics, PO Box 248046, Coral Gables, FL 33124, USA

N. Gao
X-ray Optical Systems, Inc., 30 Corporate Circle, Albany, NY 12203, USA

P. Gryboś
Faculty of Physics and Nuclear Techniques, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

P. Holl
Semiconductor Lab., MPI Halbleiterlabor, SIEMENS – Gelaende, Otto-Hahn-Ring 6, D-81739 München, Germany

J. de Hoog
Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium

Y. Hosokawa
X-ray Precision, Inc., Bld. #2, Kyoto Research Park 134, 17 Chudoji, Minami-machi, Shimogyo-ku, Kyoto 600–8813, Japan

G. Isoyama
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihagaoka, Ibaraki, Osaka Pref. 567-0047, Japan

K. Janssens
Department of Chemistry, Universiteitsplein I, University of Antwerp, B-2610 Antwerp, Belgium
J. Kawai
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606–8501, Japan

M. Kurakado
Electronics and Applied Physics, Osaka Electro-Communication University, 18-8, Hatsucho, Neyagawa, Japan

S. Kuypers
Centre for Materials Advice and Analysis, Materials Technology Group, VITO (Flemish Institute for Technological Research), B-2400 Mol, Belgium

P. Lechner
Semiconductor Lab., MPI Halbleiterlabor, SIEMENS – Gelaende, Otto-Hahn-Ring 6, D-81739 München, Germany

P. Lemberge
Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium

B. Lengeler
RWTH, Aachen University, D-52056 Aachen, Germany

G. Lutz
Semiconductor Lab., MPI Halbleiterlabor, SIEMENS – Gelaende, Otto-Hahn-Ring 6, D-81739 München, Germany

S. Mattsson
Department of Radiation Physics, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden

Y. Mori
Wacker-NSCE Corporation, 3434 Shimata, Hikari, Yamaguchi 743-0063, Japan

I. Nakai
Department of Applied Chemistry, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku, Tokyo 162–0825, Japan

T. Ninomiya
Forensic Science Laboratory, Hyogo Prefectural Police Headquarters, 5-4-1 Shimoyamate, Chuo-Ku, Kobe 650–8510, Japan

J. Osan
KFKI Atomic Energy Research Institute, Department of Radiation and Environmental Physics, PO Box 49, H-1525 Budapest, Hungary

C. Ro
Department of Chemistry, Hallym University, Chun Cheon, Kang WonDo 200–702, Korea

M. A. Rosales Medina
University of ‘Las Americas’, Puebla, CP 72820, Mexico

K. Sakurai
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

C. Schroer
RWTH, Aachen University, D-52056 Aachen, Germany

A. Simionovici
ID22, ESRF, BP 220, F-38043 Grenoble, France

H. Soltau
Semiconductor Lab., MPI Halbleiterlabor, SIEMENS – Gelaende, Otto-Hahn-Ring 6, D-81739 München, Germany

C. Spielmann
Physikalisches Institut EP1, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

L. Strueder
Semiconductor Lab., MPI Halbleiterlabor, SIEMENS – Gelaende, Otto-Hahn-Ring 6, D-81739 München, Germany

I. Szaloki
Institute of Experimental Physics, University of Debrecen, Bem tér 18/a, H-4026 Debrecen, Hungary
B. K. Tanner
BEDE Scientific Instruments Ltd, Belmont Business Park, Durham DH1 1TW, UK

M. Taylor
BEDE Scientific Instruments Ltd, Belmont Business Park, Durham DH1 1TW, UK

K. Tsuji
Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

E. Van Cappellen
FEI Company, 7451 N.W. Evergreen Parkway, Hillsboro, OR 97124-5830, USA

R. Van Grieken
Department of Chemistry, University of Antwerp, Universiteitsplein I, B-2610 Antwerp, Belgium

B. Vekemans
Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium

L. Vincze
Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium

M. Watanabe
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

K. Yamashita
Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

M. Yanagihara
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

A. Zucchiatti
Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
During the last decade, remarkable and often spectacular progress has been made in the methodological but even more in the instrumental aspects of X-ray spectrometry. This progress includes, for example, considerable improvements in the design and production technology of detectors and considerable advances in X-ray optics, special configurations and computing approaches. All this has resulted in improved analytical performance and new applications, but even more in the perspective of further dramatic enhancements of the potential of X-ray based analysis techniques in the very near future. Although there exist many books on X-ray spectrometry and its analytical applications, the idea emerged to produce a special book that would cover only the most advanced and high-tech aspects of the chemical analysis techniques based on X-rays that would be as up-to-date as possible. In principle, all references were supposed to be less than five years old. Due to rapid changes and immense progress in the field, the timescale for the book was set to be very short. A big effort was made to cover as many sub-areas as possible, and certainly those in which progress has been the fastest. By its nature, this book cannot cover the fundamental, well-known and more routine aspects of the technique; for this, reference is made to several existing handbooks and textbooks.

This book is a multi-authored effort. We believe that having scientists who are actively engaged in a particular technique to cover those areas for which they are particularly qualified, outweighs any advantages of uniformity and homogeneity that characterize a single-author book. In the specific case of this book, it would have been truly impossible for any single person to cover a significant fraction of all the fundamental and applied sub-fields of X-ray spectrometry in which there are so many advances nowadays. The Editors were fortunate enough to have the cooperation of truly eminent specialists in each of the sub-fields. Many chapters are written by Japanese scientists, and this is a bonus because much of their intensive and innovating research on X-ray methods is too little known outside Japan. The Editors wish to thank all the distinguished contributors for their considerable and timely efforts. It was, of course, necessary to have this book, on so many advanced and hot topics in X-ray spectrometry, produced within an unusually short time, before it would become obsolete; still the resulting heavy time-pressure put on the authors may have been unpleasant at times.

We hope that even experienced workers in the field of X-ray analysis will find this book useful and instructive, and particularly up-to-date when it appears, and will benefit from the large amount of readily accessible information available in this compact form, some of it presented for the first time. We believe there is hardly any overlap with existing published books, because of the highly advanced nature and actuality of most chapters. Being sure that the expert authors have covered their subjects with sufficient depth, we hope that we have chosen the topics of the different chapters to be wide-ranging enough
to cover all the important and emerging fields sufficiently well.

We do hope this book will help analytical chemists and other users of X-ray spectrometry to fully exploit the capabilities of this set of powerful analytical tools and to further expand its applications in such fields as material and environmental sciences, medicine, toxicology, forensics, archaeometry and many others.

K. Tsuji
J. Injuk
R. Van Grieken

Osaka, Antwerp